VIP Cheatsheet: Supervised Learning

Introduction to Supervised Learning

Given a set of data points $\{x(1),...,x(m)\}$ associated to a set of outcomes $\{y(1),...,y(m)\}$, we want to build a classifier that learns how to predict y from x.

r **Type of prediction** – The different types of predictive models are summed up in the table below:

Regression	on Classifier		
Outcome	Continuous Cl	ass	
	Exampl	es Linearregression	Logisticregression,SVM,NaiveBayes

r Type of model – The different models are summed up in the table below:

Discriminative mode	l Generativemodel	
Goal Directlyestimate x) EstimateP(x y)too		
What's	learned Decisionboundary Probab	ilitydistributionsofthedata
Illustration		
Examples	Regressions, SVMs	GDA, Naive Bayes

Notations and general concepts

r **Hypothesis** – The hypothesis is noted h θ and is the model that we choose. For a given input $\theta \leftarrow \theta$ – `" (θ)

r Loss function - A loss function is a function L: (z,y)

 \in R × Y -7 \rightarrow L(z,y) \in R that takes as

inputs the predicted value z corresponding to the real data value y and outputs how different they are. The common loss functions are summed up in the table below:

Least squared	Logistic	Hinge	Cross-entropy
1 (y – -z)22	log(1 + exp(yz))	max (0,1 yz)	$-[y \log(z) + (1 - y) \log(1 - z)]$
$y\in\mathbb{R}$	y = -1 $y = 1$	y = -1 $y = 1$	y = 0 z
nearregressionLog	sticregression SVM Ne	uralNetwork	

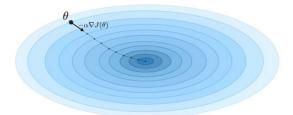
r Cost function – The cost function J is commonly used to assess the performance of a model, and is defined with the loss function L as

$$\sum$$
follows:mJ(θ)=L(h(x(i))(i) θ ,y)i=1

r **Gradient descent** – By noting α

 $\begin{picture}(20,0) \put(0,0){\line(0,0){1997}} \put(0,0){\line(0,0){$

$$\theta$$
 $\leftarrow -\theta - \alpha \nabla J(\theta)$



Remark: Stochastic gradient descent (SGD) is updating the parameter based on each training example, and batch gradient descent is on a batch of training examples.

r **Likelihood** – The likelihood of a model L(θ) given parameters θ is used to find the optimal parameters θ through maximizing the likelihood. In practice, we use the log-likelihood `(θ) = log(L(θ)) which is easier to optimize. We have:

$$θ$$
 opt = arg max L($θ$)

r Newton's algorithm – The Newton's algorithm is a numerical method that finds θ such that `'(θ) = 0. Its update rule is as follows:

Remark: the multidimensional generalization, also known as the Newton-Raphson method, has the following update rule:

$$(\theta \leftarrow \theta - \nabla 2(-1\theta \theta \theta \nabla \theta)(\theta)$$

1 Fall 2018

Linear regi	ression

We assume here that y

r **Normal equations** – By noting X the matrix design, the value of θ that minimizes the cost function is a closed-form solution such that:

$$\theta = (XTX)-1XTy$$

r **LMS algorithm** – By noting α the learning rate, the update rule of the Least Mean Squares (LMS) algorithm for a training set of m data points, which is also known as the Widrow-Hoff learning rule, is as follows:

Remark: the update rule is a particular case of the gradient ascent.

r **LWR** – Locally Weighted Regression, also known as LWR, is a variant of linear regression that weights each training example in its cost function by w(i)(x), wh)ich is defined with parameter $\overset{\mathsf{T}}{\in} \mathsf{R}$ as:

Classification and logistic regression

r **Sigmoid function** – The sigmoid function g, also known as the logistic function, is defined as follows:

\forall z \in R, g(z)= 1]01[1+e- \in ,z	
--	--

r Logistic regression – We assume here that y

form:	ļx;θ	Bernoulli(φ). We have the follow
φ=p(y=1 $\downarrow_{X}:\theta)_{X}$ 1 =g(θTx)1+exp(-

Remark: there is no closed form solution for the case of logistic regressions.

r **Softmax regression** – A softmax regression, also called a multiclass logistic regression, is used to generalize logistic regression when there are more than 2 outcome classes. By we set $\theta K = 0$, which makes the Bernqulli parameter ϕI of θ ach class I equal to:

we set on - 0, which makes the being	idili parameter yi or e
exp(θ x) φi	
∑T=iKexp(θTjx)j=1	

Generalized Linear Models

r Exponential family – A class of distributions is said to be in the exponential family if it can be written in terms of a natural parameter, also called the canonical parameter or link function, η , a sufficient statistic T(y) and a log-partition function $a(\eta)$ as follows:

$$p(y; \eta) = b(y) \exp(\eta T(y) - a(\eta))$$

Remark: we will often have T(y) = y. Also, exp(

-a(η)) can be seen as a normalization param-

eter that will make sure that the probabilities sum to one.

Here are the most common exponential distributions summed up in the following table:

Distribu	tion				
(η)T(y)a	(η)b(y)Bernou	lilogφ1-ylc	g(1+e	kp(η))1 <u>φ</u>	
()Gauss	ianμyη2122√e	xp-y2π2			
Poissonlo	og(1λ)y				
(eŋ!Ged	og(1φ)yeη)yme	triclo-log1	_ -1eη		

r **Assumptions of GLMs** – Generalized Linear Models (GLM) aim at predicting a random

<u>⊬</u> arial	ele yas a function for youing 3 as	sumptions	;;	·	
	,] '			
(1)y Lx:θ	ExpFamily(n)(2)h(x)=[;](3)= $T\theta Ey$	xθnθx			

Remark: ordinary least squares and logistic regression are special cases of generalized linear models.

Support Vector Machines

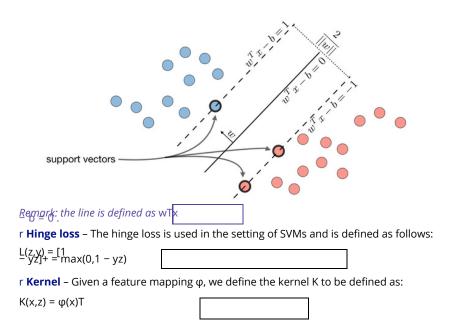
h(x) = sign(wT x)

The goal of support vector machines is to find the line that maximizes the minimum distance to the line.

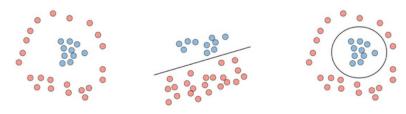
r **Optimal margin classifier** – The optimal margin classifier h is such that:

- b)					
where (w,b) \in Rn × R is the solution	on of the follow	ving optimizatio	n proble	ım:	
min1	- T. (2) L > 12				
w 2suchthaty(i)(w	1X(1)-D)>12				

2 Fall 2018



 $(\phi(z)) fined by () = exp - |\ |x-z|\ |\ 2 In practice, the kernel K de Kx, z 2\sigma 2 is called the Gaussi and th$



Non-linear separability $\begin{tabular}{ll} \blacksquare \end{tabular}$ Use of a kernel mapping ϕ $\begin{tabular}{ll} \blacksquare \end{tabular}$ Decision boundary in the original space

Remark: we say that we use the "kernel trick" to compute the cost function using the kernel because we actually don't need to know the explicit mapping ϕ , which is often very complicated. Instead, only the values K(x,z) are needed.

r Lagrangian – We define the Lagrangian

Remark: the coefficients Bi are called the Lagrange multipliers.

Generative Learning

A generative model first tries to learn how the data is generated by estimating we can then use to estimate P(y by using bayes rule.

 $P(x_y)$, which

i=1

Gaussian Discriminant Analysis

r Setting – The Gaussian Discriminant Analysis ass		
such that:	y =	= 0 and x y = 1 ar
Bernoulli(φ)		
x $ y=0 N(\mu 0, \Sigma)$ and $x y=1 N(\mu 1, \Sigma)$		
r Estimation – The following table sums up the est likelihood: $\hat{\phi} \ \mu \hat{j} (j = \emptyset, 1) \hat{\Sigma}$ $\uparrow 1 \times (i) 1 + y = 1$	_	
$\sum = \{(i)j\}(x(i)\mu)(x(i)\{y(i)=1\}m-y(i)\}$ Naive Bayes	– μΤ(i)) m 1 (ϝ) m y i = 1	1 i = 1 { y = j } i =
r Assumption – The Naive Bayes model supposes indep endent:	that the features of each da	ata point are all
ankernelandiscommonlyused. y)=P(x1,x2, y)=P(x1 y)P(x2 y)= P(xi y)		

r Solutions – Maximizing the log-likelihood gives the following solutions, with k

		€ {0,1
€ [[1,L]]		
_		
P(y=k)=1 (j)(j)		
ێڒڵڸؙڕڴڒڶٳڸٳ=kandxi=l}#j y=k}andP(xi=l y=)=m #	

Remark: Naive Bayes is widely used for text classification and spam detection.

Tree-based and ensemble methods

These methods can be used for both regression and classification problems.

r **CART** – Classification and Regression Trees (CART), commonly known as decision trees, can be represented as binary trees. They have the advantage to be very interpretable.

r **Random forest** – It is a tree-based technique that uses a high number of decision trees built out of randomly selected sets of features. Contrary to the simple decision tree, it is highly uninterpretable but its generally good performance makes it a popular algorithm.

Remark: random forests are a type of ensemble methods.

r **Boosting** – The idea of boosting methods is to combine several weak learners to form a stronger one. The main ones are summed up in the table below:

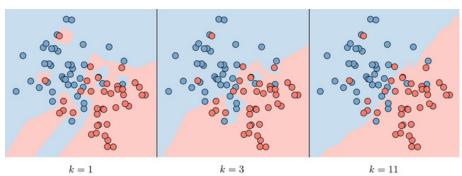
3 Fall 2018

Adaptive boosting	Gradient boosting
- High weights are put on errors to improve at the next boosting step - Known as Adaboost	- Weak learners trained on remaining errors

Other non-parametric approaches

r k-nearest neighbors – The k-nearest neighbors algorithm, commonly known as k-NN, is a non-parametric approach where the response of a data point is determined by the nature of its k neighbors from the training set. It can be used in both classification and regression settings.

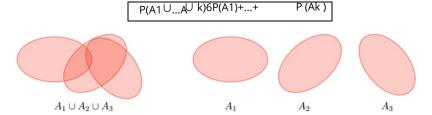
Remark: The higher the parameter k, the higher the bias, and the lower the parameter k, the higher the variance.



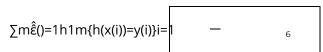
Learning Theory

r **Union bound** – Let

A1, ..., Akbe Rvents. We have:



r Hoeffding inequa



r **Probably Approximately Correct (PAC)** – PAC is a framework under which numerous results on learning theory were proved, and has the following set of assumptions:

- the training and testing sets follow the same distribution
- the training examples are drawn independently

r **Shattering** – Given a set S = $\{x(1),...,x(d)\}$, and a set of classifiers H, we say that H shatters S if for any set of labels $\{y(1),...,y(d)\}$, we have:

 $\exists h \in H, \forall i \in [[1,d]], h(x(i)) = y(i)$

r Upper bound theorem - Let

H be a finite hypothesis class such that |H| = k and let δ and the sample size m be fixed. Then, w $-\delta$ $-\delta$ $-(ithproba)bility<math>\sqrt{ofatleast(1)}$, we have: $0 \cdot min() + 21 \log 2k \hat{h} 6 \epsilon h h \in H2m\delta$

r **VC dimension** – The Vapnik-Chervonenkis (VC) dimension of a given infinite hypothesis

Hash ted VC(H) is the size of the largest set that is shattered by H.

r Theorem (Vapnik) – Let H be given, with VC_H)=dand m the number of training examples. With probability at least 1, we have:

 $(\sqrt{\frac{m}{d}}+1\log m)$ (γ) $(\sqrt{\frac{m}{d}+1\log m)}$ (γ) $(\sqrt{\frac{m}{d}}+1\log m)$ (γ) $(\sqrt{\frac{m}{d}+1\log m)}$ (γ) $(\sqrt{\frac{m}{d}}+1\log m)$ (γ) $(\sqrt{\frac{m}{d}+1\log m)}$ (γ) $(\sqrt{$

 $\textbf{lity}-\text{LetZ1,...,} Zmbe miidva \\ \textbf{riables drawn from a Bernoul} \\ \textbf{lidistribution of parameter } \phi. \\ \textbf{Let} \\ \hat{\phi} be their samplemean and \\ \textbf{y} > 0 \\ \textbf{fixed.} \\ \textbf{We have: } P(\mid \phi - \hat{\phi} \mid \phi - \hat{\phi}$

|>y)62exp(-2y2m)Remark:thisinequalityisaisoknownastheChernoffbound.

r **Training error** – For a given classifier h, we define the training error

ĝ(h),alsoknownastheempiricalriskorempiricalerror,tobeasfollows: